【行业分析】中国智慧农业发展现状及未来发展建议
智慧农业
  
2020-04-20 10:29:25
[ 导读 ] 中国智慧农业发展现状及未来发展建议。

智慧农业是以信息和知识为核心要素,通过将互联网、物联网、大数据、云计算、人工智能等现代信息技术与农业深度融合,实现农业信息感知、定量决策、智能控制、精准投入、个性化服务的全新的农业生产方式,是农业信息化发展从数字化到网络化再到智能化的高级阶段。现代农业有三大科技要素:品种是核心,设施装备是支撑,信息技术是质量水平提升的手段。智慧农业完美融合了以上三大科技要素,对农业发展具有里程碑意义。

全球智慧农业发展现状

智慧农业已成为当今世界现代农业发展的大趋势,日本、英国、加拿大、美国等多个发达国家和地区的政府和组织相继推出了智慧农业发展计划。据国际咨询机构研究与市场预测,到2025年,全球智慧农业市值将达到300.1亿美元,发展最快的是亚太地区(中国和印度),2017-2025年复合增长率(CAGR)达到11.5%,主要内容包括大田精准农业、智慧畜牧业、智慧渔业、智能温室,主要技术包括遥感与传感器技术、农业大数据与云计算服务技术、智能化农业装备(如无人机、机器人)等。

中国智慧农业发展现状与存在问题

近年来,在政府的大力支持下,中国智慧农业发展快速。截止到2018年7月,全国21个省市开展了8种主要农产品大数据的试点,通过完善监测预警体系,每日发布农产品批发价格指数,每月发布19种农产品市场供需报告和5种产品供需平衡表,实现了用数据管理服务,引导产销;以山东、河南等为代表的全国18个省市开展了整省建制的信息进村入户工程,全国1/3的行政村(约20.4万个村)建立了益农信息社,农村信息综合服务能力不断提升;广东、浙江等14个省市开展了农业电子商务试点,在428个国家级贫困县开展电商精准扶贫试点,电子商务进农村综合示范工程已累计支持了756个县,农村网络零售额达到了1.25万亿元人民币,农产品电商迈向3000亿元大关。

“十三五”期间,农业农村部在全国9个省市开展农业物联网工程区域试点,形成了426项节本增效农业物联网产品技术和应用模式。围绕设施温室智能化管理的需求,自主研制出了一批设施农业作物环境信息传感器、多回路智能控制器、节水灌溉控制器、水肥一体化等技术产品,对提高我国温室智能化管理水平发挥了重要作用。我国精准农业关键技术取得重要突破,建立了天空地一体化的作物氮素快速信息获取技术体现,可实现省域、县域、农场、田块不同空间尺度和作物不同生育时期时间尺度的作物氮素营养监测;研制的基于北斗自动导航与测控技术的农业机械,在新疆棉花精准种植中发挥了重要的作用,研制的农机深松作业监测系统解决了作业面积和质量人工核查难的问题,得到大面积应用。

在取得了大量成果的同时,我们还应该明确,我国智慧农业仍缺乏基础研究和技术积累,整体技术水平与发达国家差距15-20年。具体表现在我国智慧农业所面临的不仅仅是“短板”问题,而是整体技术水平均较低的“短桶”问题。

目前,制约我国智慧农业发展的短板技术有三项:一是农业专用传感器落后,我国目前自主研发农业传感器数量不到世界的10%,且稳定性差;二是动植物模型与智能决策准确度低,很多情况是时序控制而不是按需决策控制;三是缺乏智能化精准作业装备,作业质量差。在应用推广上,全国各省市都开展了智慧农业应用试点建设,但大都处于“盆景”状态,缺乏智慧农业大面积应用的“风景”。同时,大多数项目停留在信息的简单传输与显示,展示成分大于实际效果,与农业融合深度不够,缺乏解决农业实际问题的效果。

智慧农业具有显著的多学科交叉的特点,由于农业具有生物特性,将信息技术直接拿到农业领域往往不能有效解决问题,必须开展基于农业生物特性的农业信息学(Ag-informatics)交叉研究,揭示基础原理。然而,目前国家自然科学基金学科目录中只在作物一级学科下设立作物信息学,而与生物信息学对应的农业信息学没有作为学科方向给予支持。因此,国家在智慧农业基础研究方面的支持力度还需继续加大。

智慧农业未来发展的政策建议

完善的政策保障是产业快速发展的关键,我国智慧农业尚处于起步发展阶段,建议政府在以下5个方面制定相应政策措施,促进智慧农业发展:

1、加强政府支持。统筹各类政府资源,大幅度给予行业从业者政府资源支持。围绕重点领域、重点产业实施一批智慧农业重大项目工程,加强智慧农业关键技术研究与应用示范,总结经验,建立可复制、可推广模式。

2、制定相关补贴政策。鉴于农业的社会公益性、生态区域性、高度分散和个性化特点,推广智慧农业不可能像工业那样大规模复制,因此实施成本高、市场利润低。建议相关部门类比农机购置补贴政策,对智慧农业技术产品和应用主体给予政策性补贴,减免农村地区互联网接入费用和农民移动通讯、数据传输费用。

3、加强技术标准建设。依托联盟、协会等团体和组织,快速建立包括数据标准、产品标准、市场准入标准等团体标准,并积极推动国家和行业标准的建设。建立国家和行业认可的第三方产品、技术检测平台。

4、开放数据共享。农业数据具有散乱杂、孤岛林立等特点,建议政府部门加强农业数据的收集和整合,并在一定范围内开放相关数据,建立共享机制。对于进入国内市场的外国企业产品,要求其提供数据接口标准。

5、加强人才队伍建设。培养农业与信息多学科交叉的人才,建议教育机构在高校研究生课程中开设智慧农业相关课程;鼓励信息领域人才进入农业领域开展相关科学研究与应用推广;积极开展技术培训,建设懂技术会操作的智慧农业推广队。

文章来源:节选自公众号“农业知库”

更多干货、市场分析、重磅案例、实战课程欢迎订阅 [农业行业观察]公众号:nyguancha

 收藏 0  赞 0

相关文章