政策红利!大数据能为农业带来什么
智慧农业
  
2023-08-19 16:49:52
[ 导读 ] 大数据能为农业带来什么?


农业作为我国重要的产业,农业经济有着不可替代的地位,全国人民的工作与生活都受到农业经济的影响,而农业经济仍然处于初级阶段,甚至还有一部分区域采用的管理模式为传统的管理模式。而传统的经济管理方式,必然会影响到农业生产的利益,新型的现代化农业和传统农业具有本质上的区别,其区别是农业大数据对于经济管理中的应用在一些地区,逐步适应了新的农业农村发展模式,淘汰了以往的传统农业农村发展,大幅度的提升了农业经济的收益。

农业大数据对于农业农村发展的必要性

农业大数据是一种虚拟的资产,是在充分利用大数据平台获得的大量数据资源后,通过对传统的信息与数据进行整合、处理、分析和预判,从而获得较大潜在价值是农业大数据的优势。

农业方面,应用大数据管理的技术能够大幅度的提升农业中生产的收益,减小在种植方面的经济成本,极大的提高了种植产品的质量品质,对于社会经济的发展具有重大的意义。现已有一些大型企业开始广泛开展大数据研究和管理,进行大数据的深层优化、全面更新,以满足社会经济发展趋势要求。

全面地利用大数据,可将企业的经营发挥到极致,通过进行一系列的销售活动,提高市场中农产品的商业价值,利用大数据让农产品进入市场占据主导地位。

大数据在种植方法、种植时间、采收时间等方面进行大数据模块化管理,大幅度提高了农作物的亩产量,让农业种植户得到了更好的经济收益。

01、养殖业(含畜牧)

养殖业含畜牧业,畜牧业我就不单独说了。养殖业是智慧农业的智慧化程度较高,也可以说是数字化程度较高的至于你要纠结智慧农业和数字农业的概念,请看此文最全的农业模式分类概念解释(文字略长)。养殖业不仅能使用大数据和物联网,还能使用低阶段的AI,离机器学习和深度学习还有点距离。

1.1养殖业的生产者

目前养殖业是用物联网最多也最合适的子行业,不管是养猪、养牛、养鸡、养水产,都有物联网来提供一堆IoT数据,再结合一些生产计划、喂养执行等管理数据构建一个数据采集体系,并可以对养殖过程进行大数据分析,并做出响应措施。如识别鱼塘含氧不足,则开启指导措施。视频识别牛不动、体温高,上药。鸡定量喂水,减少传染等,应用场景还是蛮多的。

图1-某厂商的智慧养殖大数据方案

以上这些场景不用大数据,也能做,但用了更好。

图2-养猪智能化(来自某厂商材料)

1.2对养殖业的政府

还有各个省市县的智慧畜牧大数据平台,在农业政务大数据基本盘是各种农业资源的打点,也可以用农用资源地理信息来展示。对于养殖业+畜牧业,只有一般农业资源是牧草区域,某地区的养殖场位置、规模、联系人电话,某地区的防疫站位置,显示目前的草原面积。当然当牧区没牧草不够的时候,也能有点指挥作用。

应急的话。还可以用于自然灾害时的指挥,如畜牧的草原沙化,部分场景可以结合无人机。

图3-某厂商的养殖监管平台架构图

图4-某厂商官网的养殖物理网+大数据系统

无人机和摇感也能成为养殖业的数据来源。

02、种植业

种植业之前也说了,蔬菜种植大数据还是一个伪场景。唯有和AI结合的病虫害识别,我认为还是个有价值的场景。

其他种植场景,价值也是有的,如名贵草药、鲜花等。

还有一个就是热成像用来看虫害,长势预估等(遥感也能做几个品类)。

2.1对种植业的生产者

对于生产者,可以通过病虫害图像识别现在的问题,针对性施肥或者用农药。不过现在并不是所有品类都有模型,算法精准度较高的是西红柿、葡萄、生菜等,像西兰花、豌豆等还没有太成熟的模型。当然这些都只适合农业新手用或者尝试新品种,老手自己都能看明白,要比模型和专家教授都准。

图5-葡萄病虫害知识图谱

2.2对种植业的政府

对政府,种植业目前用的比较多的场景,还有摇感数大棚,定补贴。

图6-某厂商大棚数据

县域内的病虫害识别,而导致的农业应急管理,不过基本上都是系统建在那里,我还没看到用的,因为真的大面积来了,如蝗虫,一般无法马上解决。

在种植业,政府的农业大数据应用就是土地测量、土地测算、耕地红线和土地流转等,具体大家可以自己去查一下。

图7-某厂商县域种植业大数据平台

图8-农业灾害应急(来自某厂商官网)

03、林业

林业其实目前更多的场景都用在政府层面,对于生产者也一般是国企监管了。

林业大数据的现在可见应用场景是林业资源显示,森林防火、防盗防偷猎等场景都有很多价值,还能把安防设备(如海康威视)、物联网设备和森林公安局的实际工作,用大数据结合起来当然不用大数据也能做,只不过物联网数据处理起来麻烦点。

此外还有森林火灾、地质灾害的事前预警、事中处理,事后评估和知识积累。大数据的本质为数据积累和算法演进,也就是知识图谱,能够自己推理知识,生成知识。

图9-某厂商森林防火系统

04、生鲜电商

生鲜电商对大数据的而应用,基本上就是电商的老套路:实时数据分析,如销售单价、金额、总金额等;进行精准营销的智能推荐(别人喜欢叫千人前面),推荐给用户喜欢的生鲜;大数据杀熟;成本估算,应用大数据估算成本,指导采购和定价以及营销;需求预测,指导采购和加工过程。

当然以上这些面向生鲜电商的大型公司的,太小的区域性质的,小范围的生鲜团购厂商,还是别浪费资源在这个上面了。

最后其实面向生鲜电商的大数据应用,很多也是贸易商需要的,但是农产品贸易商基本上都是没有IT能力的,因此需要很多的SaaS服务提供商来为贸易商提供的大数据应用服务了。

05、价格大数据

所有农业大数据里面,最初应用的就是农业资源大数据和价格大数据,都是政府监管用的,也是其他小厂商用来做自己的场景的。

但是对于价格大数据,有个致命的缺陷就是价格数量的量级和代表性,目前仅是从全国100+的农批市场采集某个时间点上的大数据,所以价格数据可信度不高的。

不像生鲜电商,有天然的很多面向终端的零售价格数据和批发采购价格数据,还能做点分析,但是这些数据都不是对外的,不开源的。

图10-某价格大数据大屏

还有些农业大数据IT厂商的做法就是,一个个建区域电商平台,拿一个个区域农业大数据项目,以获取价格数据然后建自己的大宗交易平台(部分单品),获取价格数据;再结合国家的农产品检测价格;外购部分价格数据,做质量处理;最后的商业模式就是对外出售价格大数据了,可能看到这里,大家猜到这家公司是谁了。

结语

其实具体还得按实际的应用场景来识别,养殖业、种植业、林业、生鲜电商等的农业大数据应用,还可以深挖,有机会,我一个个深入挖掘给大家看看。

大数据应用的基础是:数据真实与精准、且有代表性;有应用场景、不是自己YY的应用;用hadoop和传统的分析软件,甚至是excel,也是需要审视的。

内容来源:农业数字化       作者:钱晓栋

更多干货、市场分析、重磅案例、实战课程欢迎订阅 [农业行业观察]公众号:nyguancha

 收藏 0  赞 0

相关文章